

StreamSAVE+

Heat recovery in ventilation

Jan Verheyen [VITO/EnergyVille]

Heat recovery in ventilation

StreamsSAVEPLUS

Streamlining Energy Savings Calculations in the EU Member States

<https://streamsavplus.eu/>

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the CINEA. Neither the European Union nor the CINEA can be held responsible for them.

Co-funded by the
European Union

This project has received funding from the European Union's LIFE programme.
Project No. 101167618 — LIFE23-CET-streamSAVEplus

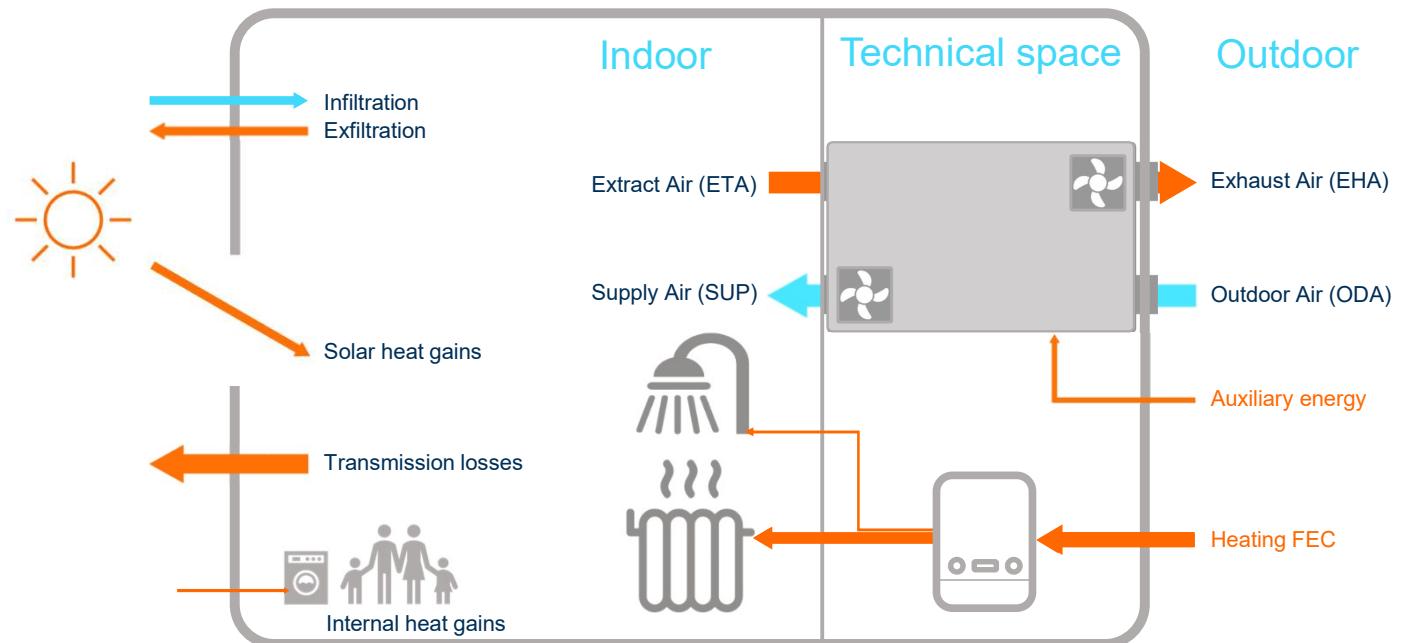
vito.be

Heat recovery in ventilation

Content

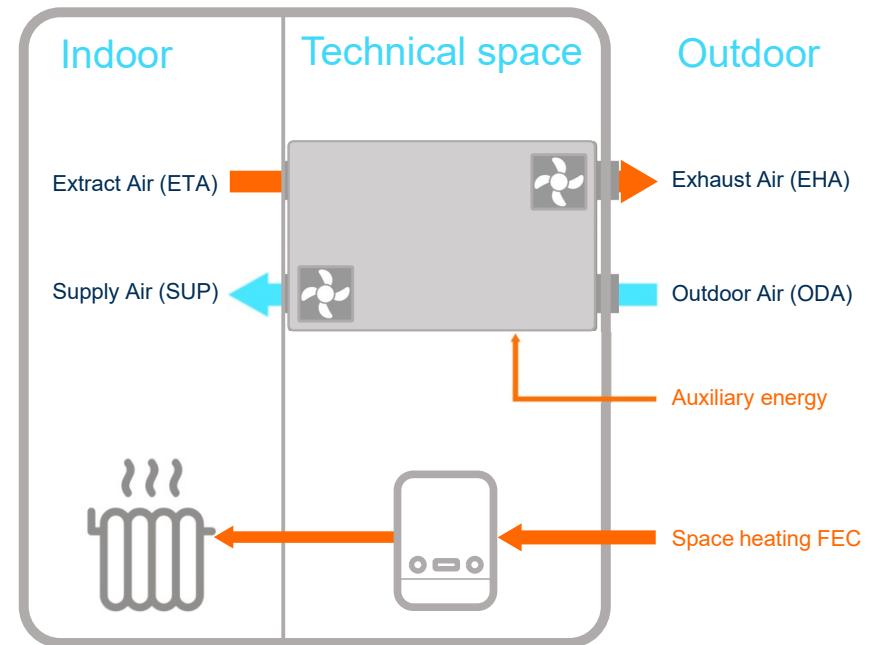
- Subject – HR in VU
 - Intro
 - Energy balance
- Methodology
 - Scope & Definitions
 - Background, Assumptions & Boundary conditions
 - Calculation of TFES-EPEC-GHG
 - Overview of Costs
- Conclusion
- Q&A

- *References*
- *Abbreviations*


Energy saving via Heat Recovery in Ventilation Units

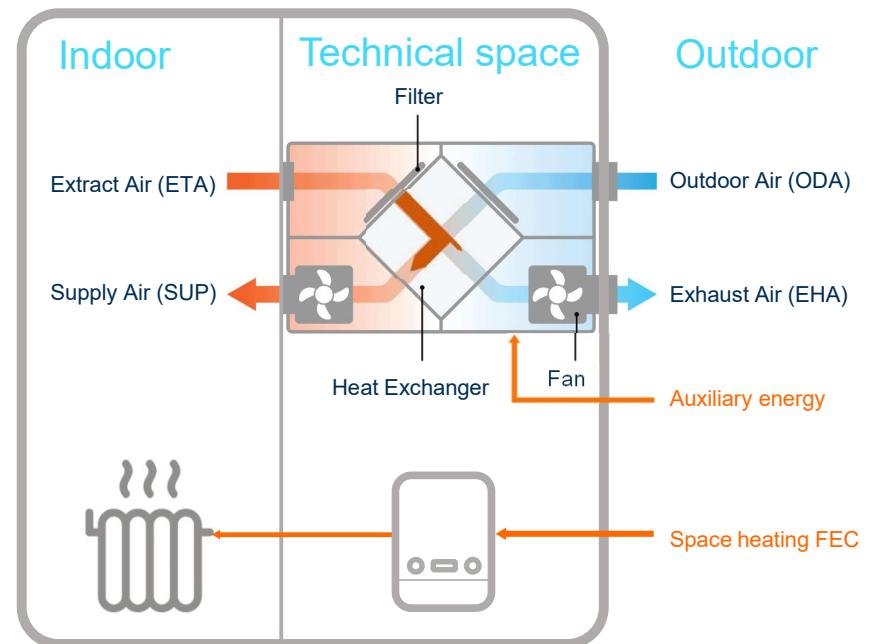
Subject

- StreamSAVE+ Priority Action: **Heat recovery in ventilation systems**
 - Bottom-up methodology: Calculation of energy savings achieved via HR in VUs.
 - Support MS in the implementation of Art. 4 & 8 of the EED (EU/2023/1791) via streamlined methodologies
 - Energy savings (Final & Primary) - GHG savings – Overview of Costs
 - StreamSAVE+ Deliverable: 'D2.2 Extended guidance on savings calculation methodologies' Chapter 5: 'Chapter 5. Savings calculation for heat recovery in ventilation systems'

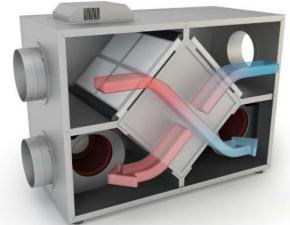

Energy saving via Heat Recovery in Ventilation Units

Subject - Schematic representation of the energy balance (winter mode)

Energy saving via Heat Recovery in Ventilation Units

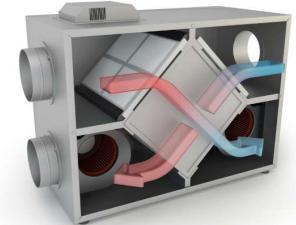

Subject - Schematic representation of the energy balance (winter mode)

Energy saving via Heat Recovery in Ventilation Units


Subject - Schematic representation of the energy balance (winter mode)

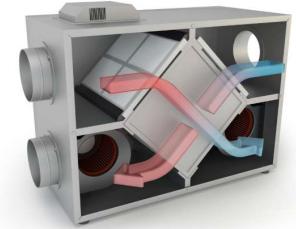
- Energy saving via Heat Recovery in Ventilation
 - Reduction of space heating energy demand
 - Increase in auxiliary energy use
 - Fans, controls, defrosting
 - Usually combined with other improvements
 - Building envelope energy performance
 - Component air tightness
 - Increased fan efficiency
 - Smart controls

Heat recovery in ventilation


Methodology - Scope & Definitions

- Following **Ecodesign requirements on Ventilation units (EU) 1253/2014 (EC, 2014)**
- Definitions
 - A heat recovery system is a part of a **bidirectional ventilation unit equipped with a heat exchanger** designed to transfer the heat contained in the (contaminated) exhaust air to the (fresh) supply air.

Heat recovery in ventilation

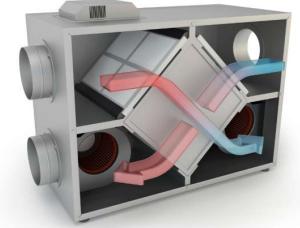

Methodology - Scope & Definitions

- A central or local **bidirectional ventilation unit** comprising at least **two fans** (exhaust and supply, each consisting of an impeller and electrical motor), **two filters** and a **casing** with a **heat recovery system** consisting of
 - In case of recuperative heat exchanger: **plate or tubular heat exchanger**;
 - In case of regenerative heat exchanger: **rotating wheel**, including material allowing latent heat transfer, a drive mechanism, a casing or frame and seals to reduce bypassing and leakage of air;
 - In case of **run-around heat recovery systems**: a heat transfer system (connecting the heat recovery device on the exhaust side and the device supplying the recovered heat to the air stream on the supply side of a ventilated space);
 - In case of a **thermal bypass** facility: additional solutions to circumvent the heat exchanger of control the heat recovery performance (for example: summer box, rotor speed control, control of air flow).

Heat recovery in ventilation

Methodology - Scope & Definitions

- Scope: VU with HR
 - Compliant with legislation (Ecodesign etc.) and good practice
 - Technology types:


- Excluded
 - VUs exclusively for operating in **specific conditions**
 - Hazardous environments / for safety purposes
 - Range hoods.
 - VUs that include a heat exchanger and a **heat pump**.
 - Included
 - LBVUs, CBVUs and CHRV

→ Distinction between **Runaround HR systems** and **Other HR systems**

→ For cost calculations further distinction between **LBVU**, **CBVU** and **CHRV**.

Heat recovery in ventilation

Methodology - Scope & Definitions

- Scope
 - Region
 - EU (3 zones)
 - Building types:
 - Residential & Non-residential
 - Retrofitted & Non-retrofitted
 - Interventions
 - Replacement of VU (with or without HR) at end-of-life or prior occasion by VU with HR
 - Introduction of VU with HR (in situations with natural or no ventilation)

Heat recovery in ventilation

Methodology - Background

■ Screening of existing methodologies

Streamsave+ Desired features			Res & Non-res (Separate)	Final; incl. 11 _{top,SH+SC} (final to net)	Stock average	Yes	No	No	No	Defrosting	Corr for heat gains
Source	Parameter	Equation	Unit	Res/Non-res	Energy level	Baseline	Efficiency of HR	Ele use for VU	Thermal losses of VU		
(EU) 1253/2014	Specific energy consumption	$SEC = t_4 \cdot p_f \cdot q_w \cdot MDSC - CTRL \cdot \Delta t_1 \cdot \eta_1' \cdot c_w \cdot (q_d - q_w \cdot CTRL \cdot MDSC \cdot (1 - \eta_1)) + Q_{sf}$	[kWh/(m ² .a)]	Res	Primary	Nat ventilation	Yes	Fans, motors, controls	Yes	Yes	Yes, via ΔT_h
(EU) 1253/2014	Thermal efficiency of a non-residential HR system	$\eta_{t_new} = (t_2'' - t_2') / (t_1' - t_2')$	[·]	Non-res	Net	n.a.	Yes	No (although part may be in re)	n.a.	n.a.	n.a.
(EU) 1253/2014	Internal Specific Fan Power	$SFP_{int} = [W/(m3/s)]$	[W/(m ³ /s)]	Non-res	Final	n.a.	No	Fans only	No	No	n.a.
MultEE (D2.1)	Total final energy savings	$TFES = A \cdot h + \beta \cdot t \cdot c + \rho \cdot \Delta T \cdot \eta \cdot n$	[kWh/a]	Res & Non-res	Final*	VU without HR	Yes	No	No	No	No
Czech Republic	Total final energy savings general formula	$TFES = (FEC_{before} - FEC_{after}) \times rb \times so \times fr \times lt$	[kWh/a]	n.a.	Final	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
France	Total final energy savings	$TFES = S_A \times S \times cf$	[kWh/a]	Non-res	Final	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Hungary	Total final energy savings	$TFES = 0,35 \cdot V \cdot n_{LT} \cdot (\eta_{new} - \eta_{old}) \cdot Z_{LT} \cdot (t_{bef} - 4) \times rb \times so \times fr \times lt$	[kWh/a]	Res & Non-res	Final*	n.a.	Yes	n.a.	n.a.	n.a.	Yes (via measuring)
Latvia	Total final energy savings	$TFES_y = n \times A \times b \times L \times t \times c \times \rho \times \Delta t \times \eta$	[kWh/a]	Res & Non-res	Final*	VU without HR	Yes	No	No	No	No
Lithuania	Net heat demand of VU with HR	$Q_{heat,net} = 10^{-4} \cdot t_{amb,ext} \cdot \rho_a \cdot c_{par} \cdot (\theta_{a,net} - \theta_{a,ext}) \cdot (1 - \eta_{heat,net}) \cdot (t_m - 1) \cdot 24 \cdot h_{heat,net} / 168 + Q_{lim,net}$	[kWh/month]	Res & Non-res	Net	VU without HR	Yes	No	Yes	No	Yes (via measuring)
Luxemburg	Annual energy savings produced by the measure	$VEEP = \frac{Q_c \times \eta_c - Q_c \times \eta'}{1000}$	[MWh/a]	Res/Non-res	Final	VU without HR	Yes	Fans only	not clear	not clear	not clear
Luxemburg	Annual energy savings produced by the measure	$Q_c = 0,35 \cdot 65 \cdot (\eta_{VMC,apres} - \eta_{VMC,avant}) \cdot V$	[MWh/a]	Res/Non-res	Final	VU w or wo HR	Yes	No	No	No	not clear
Slovenia	Total final energy savings	$TFES_s = \frac{A \cdot h \cdot \beta \cdot t \cdot c \cdot \rho \cdot \Delta T \cdot \eta \cdot N}{3600}$	[kWh/a]	Res	Final*	VU without HR	Yes	No	No	No	not clear
[Laverge J. et al.; 2012]	Total annual heat recovered per unit of flow rate	$q_{HR} = 29376 \cdot e \cdot HDD$	[Jh/m ³]	Res	Net	VU without HR	Yes	No	No	No	Yes, HDD
[Laverge J. et al.; 2012]	Additional electricity use of fans per unit of flow rate	$24 \cdot 365 \cdot \Delta SFP \cdot f$	[Jh/m ³]	Res	Primary or other	n.a.	No	Fans only	No	n.a.	n.a.
Own developed option 1	Total final energy savings (HR in VU)	$TFES_{HR} = [h \times (q_{HR} - \eta_{before}) \times A + \bar{h} \times ACH \times \rho_{air} \times c_{par} \times \Delta T \times t_{SH} / \eta_{SH}] \cdot f_{BEH}$	[kWh/a]	Res & Non-res	Final	VU w or wo HR	Yes	No	No	No	Yes
Own developed option 2	Total final energy savings (SH and/or SC)	$TFES_s = FEC_{flow,before,s} \cdot A \cdot \left[1 - \left(\frac{1 - \eta_{HR}}{1 - \eta_{before,flow}} + \frac{H_P}{H_T + H_P} + \frac{H_T}{H_T + H_P} \right) \right] \cdot f_{BEH} \cdot c_f_s$	[kWh/a]	Res & Non-res	Final	VU w or wo HR	Yes	No	No	No	Yes
Own developed option 1a or 2a**	Total final energy savings (Aux)	$TFES_{aux} = (FEC_{before,aux} - FEC_{after,aux}) \cdot f_{BEH}$	[kWh/a]	Res & Non-res	Final	VU w or wo HR	No	Fans (....)	No	Yes/No	n.a.

*Only for assumption of 100% system efficiency of space heating/space cooling, otherwise net/demand level

** Potentially to be applied in addition to option 1 or option 2

***EOL: end of life

Heat recovery in ventilation

Methodology – Assumptions & Boundary conditions

- Assumptions

- Only the **contribution of the heat exchanger** to the energy performance improvement of **space heating** is taken into account via the **thermal efficiency of the heat exchanger**.
- **Deemed savings** methodology
 - Default values assumption of the before situation reflect a baseline situation that
 - Corresponds with the stock averages for residential or non-residential buildings.
 - Already reflect improvements due to earlier legislation - Ecodesign requirements

Heat recovery in ventilation

Methodology - Calculation

- Total Final Energy Savings

$$TFES_{HR} = (FEC_{before} - FEC_{after}) * f_{BEH}$$

$$FEC_{Before} = (1 - \eta_{HR,before}) * A * h * ACH * \rho_{air} * c_{p,air} * \Delta T * t_{SH} / \eta_{SH}$$

$$FEC_{After} = \frac{1 - \eta_{HR,after}}{1 - \eta_{HR,before}} * FEC_{Before}$$

- Effect on Primary Energy Consumption

$$EPEC = FEC_{Before} \cdot \sum_{ec} (share_{ec,Before} \cdot f_{PE,ec}) - FEC_{After} \cdot \sum_{ec} (share_{ec,After} \cdot f_{PE,ec})$$

- GreenHouse Gas savings

$$GHGSAV = \left[FEC_{Before} \cdot \sum_{ec} (share_{ec,Baseline} \cdot f_{GHG,ec}) - FEC_{After} \cdot \sum_{ec} (share_{ec,Action} \cdot f_{GHG,ec}) \right] * 10^{-6}$$

Energy saving Indicative values

Ventilation Units

$\eta_{B,after}$	[dmls]
Run-around heat recovery system	0.68
All other types of heat recovery system	0.73
$\eta_{B,before}$	[dmls]
Building stock average efficiency of heat recovery – Residential	0.044
Building stock average efficiency of heat recovery – Non-residential	0.381
A	[m ²]
Residential	95.079
Non-residential	900.0
h	[m]
Residential	2.9
Non-residential	4.0
ACH	[m ³ /h/m ³]
Residential	0.30
Non-residential	0.39
ρ_{air}	[kg/m ³]
Density of air	1.293
$c_{p,air}$	[kWh/(kg.K)]
Specific heat of air	0.000279
ΔT	[°C]
Cold climate (North)	14.5
Average climate (West)	9.5
Warm climate (South)	5
t_{SH}	[h]
Cold climate (North)	6,552
Average climate (West)	5,112
Warm climate (South)	4,392
η_{BH}	[dmls]
Residential	0.75
Non-residential	0.75
η_{BH}	[dmls]
Residential	0.80

- Scope: following the scope of EU 1253/2014
 - BVUs with heat exchanger
 - Not those including heat pump technology (exhaust air as a source of an air source heat pump)

Heat recovery in ventilation

Methodology - Calculation

■ Overview of Costs

Investment cost		[Euro2024/unit]
Residential	CBVU New built	4,915
	CBVU Renovation	6,350
	CBVU Replacement	n.a.
	LBVU New built	1,415
	LBVU Renovation	1,415
	LBVU Replacement	n.a.
Non-residential	CBVU/CHRV New built	30,063
	CBVU/CHRV Renovation	33,045
	CBVU/CHRV Replacement	8,408
Variable operational costs		[Euro2024/year]
Costs of reduced fuel input		Energy prices from chapter 1.2.1 (fuel prices before/after)
Fixed operational costs		[Euro2024/unit/year]
Residential	CBVU	67
	LBVU	29
Non-residential	CBVU/CHRV	175
[a]		Lifetime
Technical lifetime		15

Heat recovery in ventilation

Conclusion

- A methodology for the calculation of the energy savings via heat recovery in ventilation systems is available to support MS in the implementation of Art. 4 & 8 of the EED (EU/2023/1791)
 - Broadly applicable; Scope ~ Ecodesign requirements for VUs (EU 1253/2014)
 - It accounts for the space heating energy savings due to the energy transfer between the extracted air and the outdoor air through the heat exchanger in the ventilation unit.
 - Input: National and case specific values are preferred, default values are available*
 - Output: TFES, EPEC, GHGSAV, Overview of Costs
- A full description of the methodology is available in StreamSAVE+ D2.2
- Calculation tool will be available via the StreamSAVE+ platform (expected autumn 2025).

Heat recovery in ventilation

- Thank you!

jan.verheyen@vito.be

<https://streamsaveplus.eu/>

[Subscribe to the StreamsavePLUS newsletter](#)

Heat recovery in ventilation

Abbreviations

- CBVU: Central Bi-directional Ventilation Unit (applicable to residential and non-residential buildings)
- CHRV: Central Heat Recovery Ventilation (applicable to non-residential buildings)
- EPEC: Effect on Primary Energy Consumption
- EU: European Union
- FEC: Final Energy Consumption
- GHG: GreenHouse Gas
- HR: Heat Recovery
- LBVU: Local Bi-directional Ventilation Unit (applicable to residential buildings)
- PA: Priority Action (related to the StreamsavePLUS project)
- TFES: Total Final Energy Savings
- VU: Ventilation Unit

Heat recovery in ventilation

References

- <https://streamsavplus.eu/>
- CEN (2022). EN 14825 - Air conditioners, liquid chilling packages and heat pumps, with electrically driven compressors, for space heating and cooling, commercial and process cooling - Testing and rating at part load conditions and calculation of seasonal performance. European Committee for standardization (CEN).
- EC (2014). Commission Regulation (EU) No 1253/2014 of 7 July 2014 implementing Directive 2009/125/EC of the European Parliament and of the Council with regard to ecodesign requirements for ventilation units. Official Journal of the European Union, OJ L 337/8.
- Jamek A. et al. (2016). MultEE D2.1: Document with general formulae of bottom-up methods to assess the impact of energy efficiency measures. Austrian Energy Agency (AEA).
- Kemna R. (2014). Average EU building heat load for HVAC equipment. Specific contract No. ENER/C3/412-2010/15/FV2014-558/SI2.680138 with reference to Framework Contract ENER/C3/412-2010.
- Laverge J., Janssens A. (2012). Heat recovery ventilation operation traded off against natural and simple exhaust ventilation in Europe by primary energy factor, carbon dioxide emission, household consumer price and exergy. Energy and Buildings 50 (2012) 315-323.
- Moorkens I. et al. (2025). StreamsavePLUS D2.2: Extended guidance for standardized savings methodologies & indicative values – Deliverable D2.2. VITO.
- Moura P. et al. (2025): streamSAVE+ Deliverable D2.1 - Translated Existing Bottom-up Methodologies in EU-27 – version number 1. ISR-UC.
- Rozsai, M., Jaxa-Rozen, M.; Salvucci, R., Sikora, P., Tattini, J., Neuwahl, F. (2024). JRC-IDEES-2021. European Commission, Joint Research Centre (JRC) [Dataset] PID: <http://data.europa.eu/89h/82322924-506a-4c9a-8532-2bdd30d69bf5>.
- Van Holsteijn R. et al. (2020a). Ventilation Units Ecodesign and Energy Labelling Preparatory Review Study Phase 1.1 and phase 1.2 - Final Report TASK 3. Use-phase Impacts - Review study on Regulations EU 1253/2014 (Ecodesign requirements for ventilation units) and EU 1254/2014 (energy labelling of residential ventilation units). Van Holsteijn en Kemna BV (VHK).
- Van Holsteijn R. et al. (2020b). Ventilation Units Ecodesign and Energy Labelling Preparatory Review Study Phase 1.1 and phase 1.2 - Final Report TASK 7. Scenarios - Review study on Regulations EU 1253/2014 (Ecodesign requirements for ventilation units) and EU 1254/2014 (energy labelling of residential ventilation units). Van Holsteijn en Kemna BV (VHK).
- Van Holsteijn R. et al. (2020c). Ventilation Units Ecodesign and Energy Labelling Preparatory Review Study Phase 1.1 and phase 1.2 - Final Report TASK 2. Markets - Review study on Regulations EU 1253/2014 (Ecodesign requirements for ventilation units) and EU 1254/2014 (energy labelling of residential ventilation units). Van Holsteijn en Kemna BV (VHK).
- Wierda L., Zanuttini A. (2024). Ecodesign impact accounting – Overview report 2024 - Prepared for the European Commission, DG Energy, unit B.3 - SPECIFIC CONTRACT No 2021/OP/0004/ENER/B3/FVC 2020-708/LOT 1/04/FV2022-531. Van Holsteijn en Kemna BV (VHK).