

Energy savings from deep renovation of buildings

The new streamSAVE Plus methodology to calculate energy savings from deep renovation of buildings (residential and non-residential)

Vesna Bukarica, EIHP

Deep renovation

Key aspects	Actions	Benefits	Challenges (methodology aspect)
<ul style="list-style-type: none"> Extensive energy performance improvement Whole building approach Long-term impact Reduction of carbon footprint 	<ul style="list-style-type: none"> Building envelope HVAC systems Electrical systems RES integration 	<ul style="list-style-type: none"> > 60% reduction in primary energy use Cost reduction GHG emission reduction Indoor comfort and health Property value Job creation (local) 	<ul style="list-style-type: none"> Definition (nZEB, ZEB) varies among MS based on cost-optimal calculations Actions leading to nZEB or ZEB depend on the starting point of a building

'deep renovation' means a renovation which is in line with the 'energy efficiency first' principle, which focuses on essential building elements and which transforms a building or building unit:

- before 1 January 2030, into a nearly zero-energy (**nZEB**) building
- from 1 January 2030, into a zero-emission (**ZEB**) building

Calculation of final energy savings (Article 8)

- The total final energy savings are calculated reflecting the effect of a bundle of deep renovation measures and are determined based on the difference in annual energy consumption for heating needs of the building before and after the renovation (space heating and domestic hot water), but with included energy consumption for other building services as well, such as lighting, ventilation and cooling

$$TFES = (FEC_{before,Art8} - FEC_{after,Art8}) * f_{BEH}$$

TFES	Total final energy savings [kWh/year] due to deep renovation of the building
FEC _{before,Art8}	Final energy consumption before deep energy renovation [kWh/ year]
FEC _{after,Art8}	Final energy consumption after deep energy renovation, i.e. after both thermal renovation and technology renovation [kWh/ year]
f _{BEH}	Factor to calculate behavioural aspects taking into account rebound effect, spill-over effect and free-rider effect [dmnl]

Calculation of final energy savings (Article 8)

$$FEC_{before,Art8} = \left(\sum_i^n \frac{SHD_{before} * w_{SHD,i,before}}{\eta_{SHD,i,before}} + \sum_i^n \frac{HWD_{before} * w_{HWD,i,before}}{\eta_{HWD,i,before}} + E_{L,before} + E_{V,before} + E_{C,before} \right) \cdot A_{before} \cdot cf_x$$

$$FEC_{after,Art8} = \left(\sum_i^n \frac{SHD_{after} * w_{SHD,i,after}}{\eta_{SHD,i,after}} + \sum_i^n \frac{HWD_{after} * w_{HWD,i,after}}{\eta_{HWD,i,after}} + E_{L,after} + E_{V,after} + E_{C,after} \right) \cdot A_{after} \cdot cf_x$$

A_{before}	Conditioned floor area of the building before deep renovation [m^2]
cf_x	Climate correction factor [dmnl]
SHD_{before}	Specific area space heating demand of the building before deep energy renovation [$kWh/m^2\text{year}$]
$w_{SHD,i,before}$	The share of the energy demand for area space heating of the building attributable to the respective energy source before deep energy renovation [dmnl] If only one source is used, the common coefficient $w_{SHD,before} = 1$. If a system of multiple energy sources with one average seasonal efficiency for whole system is used, the common coefficient $w_{SHD,before} = 1$. In other cases, the coefficient for each energy source shall be used, where $w_{SHD,i,old} < 1$ and $\sum_i^n w_{SHD,i,old} = 1$.
$\eta_{SHD,i,before}$	Annual operating efficiency of the old (replaced) building heating system by energy carrier before deep energy renovation [dmnl]
HWD_{before}	Domestic hot water demand before deep energy renovation [$kWh/m^2\text{year}$]
$w_{HWD,i,before}$	The share of the energy demand for domestic hot water preparation attributable to the respective energy source before deep energy renovation [dmnl] If only one source is used, the common coefficient $w_{HWD,before} = 1$. If a system of multiple energy sources with one average seasonal efficiency for whole system is used (e.g. heat pump with bivalent energy source), the common coefficient $w_{HWD,before} = 1$. In other cases, the coefficient for each energy source shall be used, where $w_{HWD,i,old} < 1$ and $\sum_i^n w_{HWD,i,old} = 1$.
$\eta_{HWD,i,before}$	Annual operating efficiency of the old (replaced) domestic hot water system by energy carrier before deep energy renovation [dmnl]
$E_{L,before}$	Building energy consumption for lighting before deep energy renovation [$kWh/m^2\text{year}$]
$E_{V,before}$	Building energy consumption for ventilation system before deep energy renovation [$kWh/m^2\text{year}$]
$E_{C,before}$	Building energy consumption for cooling before deep energy renovation [$kWh/m^2\text{year}$]

* Same meaning for 'after'

Calculation of final energy savings (Article 8)

Indicative values for the final energy consumption and specific energy demand per building type

Parametar [kWh/m ² *year]	Residential sector	Non-residential sector
FEC _{before,Art8} per useful area of a building	149.29	216.45
FEC _{after,Art8} per useful area of a building	59.716	86,58
SHD _{before}	88.29	119.87
SHD _{after}	35.32	47.95
HWD _{before}	14.65	18.82
HWD _{after}	5.86	7.528
E _{L,before}	3.40	16.06
E _{L,after}	Depending on type of individual actions	Depending on type of individual actions
E _{V,before}	0 (no ventilation considered) *	4.83
E _{V,after}	Depending on type of individual actions	Depending on type of individual actions
E _{C,before}	2.86 or 0 (if the cooling system is not present)	9.09
E _{C,after}	Depending on type of individual actions	Depending on type of individual actions

Indicative values for efficiency of heating system

$\eta_{\text{before}} - \text{weighted value}$	Residential sector	Non-residential sector
Heating - $\eta_{\text{SHD,before}}$	0.730	0.807
Domestic hot water - $\eta_{\text{HWD,before}}$	0.723	0.708
$\eta_{\text{after}} - \text{weighted value}$	Residential sector	Non-residential sector
Heating - $\eta_{\text{SHD,after}}$	0.902	1.015
Domestic hot water - $\eta_{\text{HWD,after}}$	0.835	0.870

Indicative values for climate correction factor

c _{fx} [dmnl]	Residential sector			Non-residential sector		
	North	West	South	North	West	South
Total final energy consumption, consisting of	1,30	1,00	0,82	0,96	1,00	0,79
Space heating	1,35	1,00	0,73	1,00	1,00	0,66
Space cooling	0,82	1,00	2,58	0,85	1,00	1,50
Water heating	0,94	1,00	0,95	0,93	1,00	1,07
Lighting	1,12	1,00	1,03	1,03	1,00	1,05
Venilation	-	-	-	1,08	1,00	1,13
Specific energy demand for						
Space heating	1,42	1,00	0,66	0,97	1,00	0,70
Water heating	0,96	1,00	0,93	0,91	1,00	0,96

Indicative values for behavioural impact factor

f _{BEH}	[dmnl]
Residential sector	0.70
Non/residential sector	0.90

Co-funded by the
European Union

Important issue: efficiency of the system

Case 1: no detailed system information ($\eta_{SHD, \text{before}}$ and $\eta_{HWD, \text{before}}$) is known

- Use weighted average values (see previous slide)
- Also available: Indicative values for efficiency of a reference heating system before and after retrofit per energy carrier

η_{before} – reference heating system per energy carrier	Residential sector		Non-residential sector	
	Heating - $\eta_{SHD, \text{before}}$	Domestic hot water - $\eta_{HWD, \text{before}}$	Heating - $\eta_{SHD, \text{before}}$	Domestic hot water - $\eta_{HWD, \text{before}}$
Solids	0.669	0.685	0.645	0.674
Liquified petroleum gas (LPG)	0.602	0.675	0.651	0.607
Diesel oil	0.573	0.600	0.589	0.578
Natural gas	0.668	0.668	0.681	0.654
Gas heat pumps	-	-	2.266	-
Conventional gas heaters	-	-	0.675	-
Biomass	0.649	0.719	0.549	0.682
Geothermal	0.800	0.838	0.835	-
Distributed heat	0.796	0.838	0.826	0.828
Advanced electric heating	2.669	0.689	2.694	0.704
Conventional electric heating	0.751		0.753	
Electricity in circulation	1.000	-	1.000	-
Solar	-	1.000	-	1.000

η_{after} – reference heating system in 2021	Heating - $\eta_{SHD, \text{after}}$	Domestic hot water - $\eta_{HWD, \text{after}}$	Heating - $\eta_{SHD, \text{after}}$	Domestic hot water - $\eta_{HWD, \text{after}}$
Gas heat pumps	-	-	2.900	-
Biomass	0.774	0.849	0.584	0.818
Geothermal	0.856	0.878	0.872	-
Distributed heat	0.853	0.901	0.885	0.899
Advanced electric heating	3.581	-	3.561	-
Conventional electric heating	0.892	0.770	0.872	0.884
Electricity in circulation	1.000	-	1.000	-
Solar	1.000	1.000	-	1.000

Important issue: efficiency of the system

Case 2: The efficiency of the source ($\eta_{s,SHD}$ or $\eta_{s,HWD}$) is known, but the efficiencies about distribution system are not known

$$\eta_{SHD,i} = \eta_{s,SHD,i} \cdot \eta_{sys,SHD,i}$$

$$\eta_{sys,SHD,i} = \eta_{dis,SHD,i} \cdot \eta_{em,SHD,i} \cdot \eta_{c,SHD,i}$$

$$\eta_{HWD,i} = \eta_{s,HWD,i} \cdot \eta_{sys,HWD,i}$$

η_s	Residential sector		Non-residential sector	
	Heating - $\eta_{s,SHD,min}$	Domestic hot water - $\eta_{s,HWD,min}$	Heating - $\eta_{s,SHD,min}$	Domestic hot water - $\eta_{s,HWD,min}$
Biomass	0.750	0.750	0.770	0.770
Geothermal	0.869	0.890	0.872	0.890
Distributed heat	0.838	0.876	0.885	0.876
Advanced electric heating	3.100	1.100	3.100	1.100
Conventional electric heating	0.360	0.370	0.360	0.370
Electricity in circulation	1.000	1.000	1.000	1.000
Solar	1.000	1.000	1.000	1.000

- $\eta_{s,SHD,i}$ is the standardized seasonal efficiency of the heat source for heating
- $\eta_{sys,SHD,i}$ is efficiency of heating system without efficiency of heat source
- Same approach for hot water preparation

SPF _{SHD}	Value
<i>Electrically driven</i>	
Air sourced heat pump	2.6
Ground-air heat pump	3.2
Ground-water heat pump	3.5
<i>Driven by thermal energy</i>	
Air sourced heat pump	1.2
Ground-air heat pump	1.4
Ground-water heat pump	1.6

SPF _{HWD}	Value
All types of electrically driven heat pumps	2.4
All types of thermal heat pumps	1.1

Part of heating system	System before	System after
Heating system efficiency - $\eta_{sys,SHD}$	0.68	0.86
Heat distribution efficiency - $\eta_{dis,SHD}$	0.93	0.97
Heat emission efficiency - $\eta_{em,SHD}$	0.78	0.93
Heat control system efficiency - $\eta_{c,SHD}$	0.94	0.95
Hot water system - $\eta_{sys,HWD}$	0.3-0.75	0.6-0.75

Important issue: efficiency of the system

Case 3: The source and system efficiency values are known

- Can be taken from national values, energy performance certificates, assessments for specific building (audit)
- Same approach as in Case 2
- If some values are unknown - combine

$$\eta_{SHD,i} = \eta_{s,SHD,i} \cdot \eta_{sys,SHD,i}$$

$$\eta_{sys,SHD,i} = \eta_{dis,SHD,i} \cdot \eta_{em,SHD,i} \cdot \eta_{c,SHD,i}$$

$$\eta_{HWD,i} = \eta_{s,HWD,i} \cdot \eta_{sys,HWD,i}$$

Calculation of cumulative savings (Article 8)

- The formula takes into account the different lifetimes of construction and technological measures

$$TFES_{cumulative} = TFES_{con} + TFES_{tech}$$

Cumulative energy savings in given year n after deep renovation

$$TFES_{cumulative,n} = \left(\frac{TFES_{con}}{lt_{con}} + \frac{TFES_{tech}}{lt_{tech}} \right) * n$$

1st step – thermal renovation

$$TFES_{con} = (FEC_{before,Art8} - FEC_{after,con,Art8}) * f_{BEH} * lt_{con}$$

Whereas*:

$$FEC_{before,Art8} = \left(\sum_i^n \frac{SHD_{before} * w_{SHD,i,before}}{\eta_{SHD,i,before}} + \sum_i^n \frac{HWD_{before} * w_{HWD,i,before}}{\eta_{HWD,i,before}} + E_{L,before} + E_{V,before} + E_{C,before} \right) * A_{before} * cf_x$$

$$FEC_{after,con,Art8} = \left(\sum_i^n \frac{SHD_{after,con} * w_{SHD,i,before}}{\eta_{SHD,i,before}} + \sum_i^n \frac{HWD_{before} * w_{HWD,i,before}}{\eta_{HWD,i,before}} + E_{L,before} + E_{V,before} + E_{C,before} \right) * A_{after,con} * cf_x$$

- The first step calculates the energy savings from building measures (only thermal renovation of building envelope) that have a longer lifetime, then

- Only the savings from technological measures with a shorter lifetime are calculated

*The gray part of the calculation can be ignored in the 1st step, because it does not affect the result. Changes in technology are only addressed in the 2nd step.

2nd step – technology improvements

$$TFES_{tech} = (FEC_{after,con,Art8} - FEC_{after,Art8}) * f_{BEH} * lt_{tech}$$

Whereas:

$$FEC_{after,con,Art8} = \left(\sum_i^n \frac{SHD_{after,con} * w_{SHD,i,before}}{\eta_{SHD,i,before}} + \sum_i^n \frac{HWD_{before} * w_{HWD,i,before}}{\eta_{HWD,i,before}} + E_{L,before} + E_{V,before} + E_{C,before} \right) * A_{after,con} * cf_x$$

$$FEC_{after,Art8} = \left(\sum_i^n \frac{SHD_{after} * w_{SHD,i,after}}{\eta_{SHD,i,after}} + \sum_i^n \frac{HWD_{after} * w_{HWD,i,after}}{\eta_{HWD,i,after}} + E_{L,after} + E_{V,after} + E_{C,after} \right) * A_{after} * cf_x$$

Lifetime of savings	[a]
Construction	>25
Technology	10
Air to air heat pump	10
Air to water heat pump	15
Geothermal heat pump	25
High-efficiency boilers (< 30 kW)	20
High-efficiency boilers (> 30 kW)	25
Efficient lighting systems	15
Efficient central air-conditioning and chillers	17
Efficient ventilation systems	15

Data sources for indicative calculation values

- + Integrated Database of the European Energy System (IDEES) database
 - datasets “RES_hh_fecs” and “SER_hh_fecs for FEC_{before}
 - FEC_{after} at least 60% of FEC_{before}
 - datasets “RES_hh_tess” and “SER_hh_tess” for SHD and HWD
 - datasets “RES_hh_eff” and “SER_hh_eff” for system efficiencies
 - ventilation, lighting and cooling
 - climate factor
- + Eco-design requirements - > EPREL database
- + PRIMES model
- + Literature review on energy performance gap related to occupant behaviour in post-retrofitted buildings

Calculation of impact on energy consumption (Article 4)

Indicative values for **residential** buildings

$$EPEC = FEC_{Baseline} \cdot \sum_{ec} (share_{ec,Baseline} \cdot f_{PE,ec}) - FEC_{Action} \cdot \sum_{ec} (share_{ec,Action} \cdot f_{PE,ec})$$

EPEC	Effect on primary energy consumption [kWh/a]
FEC	Annual final energy consumption [kWh/a]
share _{ec}	Share of final energy carrier on final energy consumption [dmnl]
f _{PE,ec}	Final to primary energy conversion factor of the used energy carrier [dmnl]
Baseline	Index for the baseline situation of the action
Action	Index for the situation after the implementation of the action
ec	Index of energy carrier

Share _{ec} – Baseline	Heating [%]	Domestic hot water [%]	Heating and DHW [%]
Solids	4.63	2.21	4.28
Liquefied petroleum gases	1.50	4.20	1.88
Gas/Diesel oil	13.42	10.23	12.96
Natural gas	38.88	37.71	38.71
Wood/wood waste	23.16	8.15	21.00
Geothermal energy	0.02	0.02	0.02
District heat	11.15	7.30	10.60
Electricity	7.23	24.08	9.65
Solar	0.00	6.09	0.88
Share _{ec} – Action	Heating [%]	Domestic hot water [%]	Heating and DHW [%]
For heat pump			
Electricity	100.00	100.00	100.00
For biomass boiler			
Wood/wood waste	100.00	100.00	100.00
For district heating			
District heat	100.00	100.00	100.00

Calculation of impact on energy consumption (Article 4)

$$EPEC = FEC_{Baseline} \cdot \sum_{ec} (share_{ec,Baseline} \cdot f_{PE,ec}) - FEC_{Action} \cdot \sum_{ec} (share_{ec,Action} \cdot f_{PE,ec})$$

EPEC	Effect on primary energy consumption [kWh/a]
FEC	Annual final energy consumption [kWh/a]
share _{ec}	Share of final energy carrier on final energy consumption [dmnl]
f _{PE,ec}	Final to primary energy conversion factor of the used energy carrier [dmnl]
Baseline	Index for the baseline situation of the action
Action	Index for the situation after the implementation of the action
ec	Index of energy carrier

Indicative values for non-residential buildings

Share _{ec} – Baseline	Heating [%]	Domestic hot water [%]	Heating and DHW [%]
Solids	1.50	0.33	1.30
Liquified petroleum gas (LPG)	0.33	2.33	0.67
Diesel oil	17.17	15.40	16.87
Natural gas	43.05	30.86	41.01
Biomass	4.55	0.59	3.88
Distributed heat	0.43	9.33	12.39
Geothermal	13.01	0.00	0.36
Electricity	19.96	39.08	23.18
Solar	0.00	2.07	0.35
Share _{ec} – Action	Heating [%]	Domestic hot water [%]	Heating and DHW [%]
For heat pump			
Electricity	100.00	100.00	100.00
For biomass boiler			
Wood/wood waste	100.00	100.00	100.00
For district heating			
District heat	100.00	100.00	100.00

Calculation of impact on energy consumption (Article 4)

$$EPEC = FEC_{Baseline} \cdot \sum_{ec} (share_{ec,Baseline} \cdot f_{PE,ec}) - FEC_{Action} \cdot \sum_{ec} (share_{ec,Action} \cdot f_{PE,ec})$$

EPEC	Effect on primary energy consumption [kWh/a]
FEC	Annual final energy consumption [kWh/a]
share _{ec}	Share of final energy carrier on final energy consumption [dmnl]
f _{PE,ec}	Final to primary energy conversion factor of the used energy carrier [dmnl]
Baseline	Index for the baseline situation of the action
Action	Index for the situation after the implementation of the action
ec	Index of energy carrier

Energy carrier	factor final to primary [-]	Energy carrier	factor final to primary [-]
Electricity	2.064	Anthracite	1.002
District heat	1.592	Lignite	1.002
Natural gas	1.007	Charcoal	1.002
Gas/Diesel oil	1.117	Coal tar	1.002
Motor gasoline	1.117	Coke oven coke and lignite coke	1.002
Biodiesels	1.002	Coking coal	1.002
Biogasoline	1.002	Patent fuel	1.002
Other liquid biofuels	1.002	Sub-bituminous coal	1.002
Biogas	1.026	Other bituminous coal	1.002
Wood/wood waste	1.002	Industrial wastes	1.000
Other primary solid biomass	1.002	Blast furnace gas	1.089
Kerosene (other than jet kerosene)	1.117	Coke oven gas	1.089
Liquefied petroleum gases	1.117	Oxygen steel furnace gas	1.089
Naphtha	1.117		
Natural gas liquids	1.117		
Petroleum coke	1.117		
Refinery gas	1.117		
Residual fuel oil	1.117		
White spirit and SBP	1.117		
Other petroleum products	1.117		

Calculation of greenhouse gas savings

$$GHGSAV = \left[FEC_{Baseline} \cdot \sum_{ec} (share_{ec,Baseline} \cdot f_{GHG,ec}) - FEC_{Action} \cdot \sum_{ec} (share_{ec,Action} \cdot f_{GHG,ec}) \right] * 10^{-6}$$

GHGSAV	Greenhouse gas savings [t CO ₂ e p.a.]
FEC	Annual final energy consumption [kWh/a]
share	Share of final energy carrier on final energy consumption [dmnl]
f _{GHG}	Emission factor of final energy carrier [g CO ₂ /kWh]
Baseline	Index for the baseline situation of the action
Action	Index for the situation after implementation of the action
ec	Index of energy carrier

Data sources for indicative calculation values

The **shares of energy carriers per end-use type and sector** are based on the IDEES database, dataset "RES_hh_fec" for final energy consumption

The **emission factor(s)** for energy carriers are taken from Annex VI of the Regulation on the monitoring and reporting of greenhouse gas emissions (2018/2066/EU)

Energy carrier	emission factor [g CO ₂ /kWh]	Energy carrier	emission factor [g CO ₂ /kWh]
Electricity	104.39	Anthracite	353.88
District heat	194.70	Lignite	363.60
Natural gas	201.96	Charcoal	0.00
Gas/Diesel oil	266.76	Coal tar	290.52
Motor gasoline	249.48	Coke oven coke and lignite coke	385.20
Biodiesels	0.00	Coking coal	340.56
Biogasoline	0.00	Patent fuel	351.00
Other liquid biofuels	0.00	Sub-bituminous coal	345.96
Biogas	0.00	Other bituminous coal	340.56
Wood/wood waste	0.00	Industrial wastes	514.80
Other primary solid biomass	0.00	Blast furnace gas	936.00
Kerosene (other than jet kerosene)	258.84	Coke oven gas	159.84
Liquefied petroleum gases	227.16		
Naphtha	263.88		
Natural gas liquids	231.12		
Petroleum coke	351.00		
Refinery gas	207.36		
Residual fuel oil	278.64		
White spirit and SBP	263.88		
Other petroleum products	263.88		

Overview of costs

Deep renovation component	CAPEX excluding VAT [euro2024/kW]	OPEX excluding VAT [% of investment costs]
Complex insulation (average for combination of windows and walls/roofs/basement)	180 – 383 [euro2024/m ²]	/
Biomass boiler	150 – 472	2.0 – 4.0
Heat pump (air – water)	631 – 902	1.5 – 4.0
Heat pump (water – water)	834 – 1,191	
Heat pump (ground – water)	1,364 – 1,949	
Heat pump (gas)	1,352	0.5
Electric resistance heating	69	
District heating	84 - 105	0.5 – 1.5
Air conditioning (ventilation and cooling system)	158 - 665	2.0 – 4.0
Photovoltaic system	1,500 - 2,500	0.5 – 1.5
Solar thermal system (including water tank storage)	1,438	1.0 – 2.
Lighting (non-residential)	10	0.5 – 1.0

Sector	CAPEX excluding VAT [euro2024/m ²]
Residential	440 - 578
Non-residential	512 – 660

Data sources for indicative calculation values

Data from the EU Reference Scenario 2020, developed by the European Commission with the PRIMES energy system model were used as a starting point to obtain EU-wide data on investment costs per deep renovation component.

Eurostat was a source of data for HICP, which was used to correct PRIMES prices to the euro2024 level.

Publicly available data from national sources, especially from Croatian building renovation programmes that promote deep renovation of residential and non-residential (public) buildings were used to determine overall costs of deep renovation.

Thank you for your attention!

Vesna Bukarica
Email: vbukarica@eihp.hr

Co-funded by the
European Union

Project partners

Co-funded by the
European Union

Thank You

Get in touch for more information!

Project coordinator – Jiří Karásek, SEVEn

All project reports will be available for download
on the streamSAVE+ website
<https://streamsavaplus.eu/>

And the platform

<https://streamsavaplus.eu/priority-actions>

Email the project at jiri.karasek@svn.cz

Co-funded by the
European Union